- 1 A curve has parametric equations $x = \sec \theta$, $y = 2 \tan \theta$.
 - (i) Given that the derivative of $\sec \theta$ is $\sec \theta \tan \theta$, show that $\frac{dy}{dx} = 2 \csc \theta$. [3]
 - (ii) Verify that the cartesian equation of the curve is $y^2 = 4x^2 4$. [2]

Fig. 5 shows the region enclosed by the curve and the line x = 2. This region is rotated through 180° about the *x*-axis.

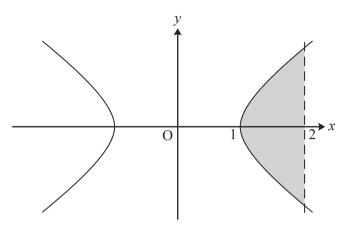


Fig. 5

(iii) Find the volume of revolution produced, giving your answer in exact form. [3]

2 Show that the equation $\csc x + 5 \cot x = 3 \sin x$ may be rearranged as

$$3\cos^2 x + 5\cos x - 2 = 0.$$

Hence solve the equation for $0^{\circ} \le x \le 360^{\circ}$, giving your answers to 1 decimal place. [7]

3 Using appropriate right-angled triangles, show that $\tan 45^\circ = 1$ and $\tan 30^\circ = \frac{1}{\sqrt{3}}$. Hence show that $\tan 75^\circ = 2 + \sqrt{3}$. [7] **4** Prove that $\sec^2\theta + \csc^2\theta = \sec^2\theta \csc^2\theta$.

5 Solve the equation $\csc^2 \theta = 1 + 2 \cot \theta$, for $-180^\circ \le \theta \le 180^\circ$. [6]

[4]

[4]

- 6 Given that $\csc^2 \theta \cot \theta = 3$, show that $\cot^2 \theta \cot \theta 2 = 0$. Hence solve the equation $\csc^2 \theta - \cot \theta = 3$ for $0^\circ \le \theta \le 180^\circ$. [6]
- 7 Given that $x = 2 \sec \theta$ and $y = 3 \tan \theta$, show that $\frac{x^2}{4} \frac{y^2}{9} = 1.$ [3]

8 Solve the equation

$$\sec^2\theta = 4, \quad 0 \le \theta \le \pi,$$

giving your answers in terms of π .

PhysicsAndMathsTutor.com