1 A curve has parametric equations $x=\sec \theta, y=2 \tan \theta$.
(i) Given that the derivative of $\sec \theta$ is $\sec \theta \tan \theta$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \operatorname{cosec} \theta$.
(ii) Verify that the cartesian equation of the curve is $y^{2}=4 x^{2}-4$.

Fig. 5 shows the region enclosed by the curve and the line $x=2$. This region is rotated through 180° about the x-axis.

Fig. 5
(iii) Find the volume of revolution produced, giving your answer in exact form.

2 Show that the equation $\operatorname{cosec} x+5 \cot x=3 \sin x$ may be rearranged as

$$
3 \cos ^{2} x+5 \cos x-2=0
$$

Hence solve the equation for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, giving your answers to 1 decimal place.

3 Using appropriate right-angled triangles, show that $\tan 45^{\circ}=1$ and $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$.
Hence show that $\tan 75^{\circ}=2+\sqrt{3}$.

4 Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$.

5 Solve the equation $\operatorname{cosec}^{2} \theta=1+2 \cot \theta$, for $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

6 Given that $\operatorname{cosec}^{2} \theta-\cot \theta=3$, show that $\cot ^{2} \theta-\cot \theta-2=0$.
Hence solve the equation $\operatorname{cosec}^{2} \theta-\cot \theta=3$ for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

7 Given that $x=2 \sec \theta$ and $y=3 \tan \theta$, show that $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$.

8 Solve the equation

$$
\sec ^{2} \theta=4, \quad 0 \leqslant \theta \leqslant \pi
$$

giving your answers in terms of π.

